Is the conventional interval arithmetic correct?
نویسندگان
چکیده
Interval arithmetic as part of interval mathematics and Granular Computing is unusually important for development of science and engineering in connection with necessity of taking into account uncertainty and approximativeness of data occurring in almost all calculations. Interval arithmetic also conditions development of Artificial Intelligence and especially of automatic thinking, Computing with Words, grey systems, fuzzy arithmetic and probabilistic arithmetic. However, the mostly used conventional Moore-arithmetic has evident weak-points. These weak-points are well known, but nonetheless it is further on frequently used. The paper presents basic operations of RDM-arithmetic that does not possess faults of Moore-arithmetic. The RDM-arithmetic is based on multi-dimensional approach, the Moore-arithmetic on one-dimensional approach to interval calculations. The paper also presents a testing method, which allows for clear checking whether results of any interval arithmetic are correct or not. The paper contains many examples and illustrations for better understanding of the RDM-arithmetic. In the paper, because of volume limitations only operations of addition and subtraction are discussed. Operations of multiplication and division of intervals will be presented in next publication. Author of the RDM-arithmetic concept is Andrzej Piegat.
منابع مشابه
Arithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making
The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...
متن کاملRay Casting Implicit Procedural Noises with Reduced Affine Arithmetic
A method for ray casting implicit surfaces, defined with procedural noise models, is presented. The method is robust in that it is able to guarantee correct intersections at all image pixels and for all types of implicit surfaces. This robustness comes from the use of an affine arithmetic representation for the quantity that expresses the variation of the implicit function along a ray. Affine a...
متن کاملExtended Interval Arithmetic in IEEE Floating-Point Environment
This paper describes an implementation of a general interval arithmetic extension, which comprises the following extensions of the conventional interval arithmetic: (1) extension of the set of normal intervals by improper intervals; (2) extension of the set of arithmetic operations for normal intervals by nonstandard operations; (3) extension by infinite intervals. We give a possible realizatio...
متن کاملInterval-valued intuitionistic fuzzy aggregation methodology for decision making with a prioritization of criteria
Interval-valued intuitionistic fuzzy sets (IVIFSs), a generalization of fuzzy sets, is characterized by an interval-valued membership function, an interval-valued non-membership function.The objective of this paper is to deal with criteria aggregation problems using IVIFSs where there exists a prioritization relationship over the criteria.Based on the ${L}$ukasiewicz triangular norm, we first p...
متن کاملMulti-Group Classification Using Interval Linea rProgramming
Among various statistical and data mining discriminant analysis proposed so far for group classification, linear programming discriminant analysis has recently attracted the researchers’ interest. This study evaluates multi-group discriminant linear programming (MDLP) for classification problems against well-known methods such as neural networks and support vector machine. MDLP is less compli...
متن کامل